artikel lengkap |
Rektorat Universitas Negeri Bangka Belitung, Jl. Merdeka No. 4 Pangkalpinang Kep. Bangka Belitung Indonesia
Telp. +62 717 422145 Fax +62 717 421303 Email : info@ubb.ac.id
 


Berikut kami sampaikan bahwa Tes Kompetensi Dasar CPNS di lingkungan Universitas Bangka Belitung akan dilaksanakan mulai tanggal 7 Oktober 2014 berdasarkan nomor sesi masing-masing peserta, di Tempat Uji Kompetensi (TUK) yang telah ditentukan. Berdasarkan zona tes yang telah dipilih, nama-nama peserta, tempat dan waktu/sesi pelaksanaan TKD ditetapkan sebagaimana tabel terlampir.Peserta dapat mengikuti TKD hanya di tempat dan waktu/sesi yang telah ditetapkan tersebut.
 
  Menu utama website Universitas Bangka Belitung
 
 
 
Artikel & Opini Universitas Bangka Belitung

MATEMATIKA DAN CARA MENGAJARKANNYA


Jika merunut catatan sejarah, Matematika telah lahir sejak 3000 SM yaitu pada saat Bangsa Mesir Kuno dan Babilonia mulai menggunakan aritmetika, aljabar, dan geometri untuk keperluan astronomi, bangunan dan konstruksi, perpajakan dan urusan keuangan lainnya. Sistematisasi matematika menjadi suatu ilmu, baru terjadi pada zaman Yunani Kuno yakni antara tahun 600 dan 300 SM. Sejak saat itu matematika mulai berkembang luas, interaksi matematika dengan bidang lain seperti sains dan teknologi semakin nampak. Kini, matematika telah menjadi alat penting dalam berbagai hal. Hampir setiap bidang ilmu dan teknologi memakai matematika. Dalam realita yang demikian, penguasaan terhadap matematika menjadi syarat perlu agar dapat mempertahankan eksistensi di era perkembangan ilmu dan teknologi sekarang ini.

Pembelajaran matematika secara formal umumnya diawali di bangku sekolah. Sementara itu, matematika di sekolah masih menjadi pelajaran yang menakutkan bagi para siswa. Di antara berbagai faktor yang memicu hal ini adalah proses pembelajaran yang kurang asyik dan menarik. Model pembelajaran yang sering di temui pada pembelajaran matematika adalah proses pembelajaran bercorak “teacher centered”, yaitu pembelajaran yang berpusat pada guru. Sehingga guru menjadi pemeran utama dan kehadirannya menjadi sangat menentukan. Pembelajaran menjadi tak dapat dilakukan tanpa kehadiran guru. Siswa cenderung pasif dan tidak berperan selama proses pembelajaran. Sehingga proses yang muncul adalah “take and give”. Dalam merangkai pembelajaran, guru pada umumnya terbiasa dengan model standar, yakni pembelajaran yang bermula dari rumus, menghapalnya, kemudian diterapkan dalam contoh soal.

Model pembelajaran yang demikian tidak memberi ruang bagi siswa untuk melakukan observasi (mengamati), eksplorasi (menggali), inkuiri (menyelidiki), dan aktivitas-aktivitas lain yang memungkinkan mereka terlibat dan memahami permasalahan yang sesungguhnya. Model seperti ini yang mengakibatkan matematika bak kumpulan rumus yang menyeramkan, sulit dipelajari, dan nampak abstrak.

Bagaimana Sebaiknya Matematika Diajarkan?


Matematika adalah ilmu realitas, dalam artian ilmu yang bermula dari kehidupan nyata. Selayaknya pembelajarannya dimulai dari sesuatu yang nyata, dari ilustrasi yang dekat dan mampu dijangkau siswa, dan kemudian disederhanakan dalam formulasi matematis. Mengajarkan matematika bukan sekedar menyampaikan aturan-aturan, definisi-definisi, ataupun rumus-rumus yang sudah jadi. Konsep matematika seharusnya disampaikan bermula pada kondisi atau permasalahan nyata. Berikut tahapan pengajaran yang dapat dilakukan:
  1. Siswa dibawa untuk mengamati dan memahami persoalan terlebih dahulu. Selanjutnya perkenalkan beberapa definisi penting yang harus dipahami agar siswa memiliki bekal untuk memahami fenomena-fenomena yang mereka temukan di lapangan.
  2. Ajak siswa untuk melakukan eksplorasi, mencoba-coba, dan biarkan mereka melihat apa yang terjadi. Di sini akan ada proses memunculkan ide-ide kreatif yang boleh jadi diluar dugaan guru. Di sinilah ruang kreatifitas terbentuk. Siswa akan lebih menikmati proses pembelajaran yang dilakukan.
  3. Biarkan siswa membuat hipotesis/dugaan atas apa yang mereka lakukan.
  4. Guru bersama siswa membahas kegiatan yang dilakukan. Berikan kesempatan pada para siswa untuk mempresentasikan hasil pengamatan mereka. Kemudian baru dilakukan proses verifikasi, meluruskan apa yang sudah dilakukan sehingga muncul formula atau rumus atau model yang dapat dijadikan rujukan ketika siswa menemukan persoalan serupa.
  5. Satu hal yang juga tidak kalah penting adalah proses mengapresiasi. Seandainya hipotesis yang diambil oleh siswa ternyata kurang tepat maka guru hendaknya tetap memberi apresiasi. Dengan seperti itu, maka siswa akan tetap terpacu motivasinya.


Sebagai contoh dalam pembelajaran mengenai perbandingan trigonometri . Pembelajaran trigonometri sering kali ditakuti karena yang nampak ke permukaan adalah simbol-simbol dan rumus-rumus yang abstrak. Adapun maknanya jarang diangkat dan dipahamkan kepada para siswa. Perbandingan trigonometri sesungguhnya berawal dari persoalan nyata. Berikut salah satu alternatif pengajaran yang dapat dilakukan:
  1. Guru terlebih dahulu menjelaskan definisi-definisi penting sebagai bekal bagi mereka untuk melakukan observasi dilapangan.
  2. Selanjutnya minta para siswa untuk mengukur tinggi benda-benda seperti tiang bendera, pohon, bangunan kelas, dan lain-lain. Biarkan mereka berekslporasi menemukan caranya sendiri. Dari sisni tentu akan ada beragam cara yang diusulkan siswa agar dapat mengukur tinggi benda-benda tersebut. Dalam hal ini guru bertugas mengakomodir berbagai respon yang muncul, membimbing, dan mencoba mengarahkan para siswa agar tidak terlalu keluar dari wilayah yang dijadikan tujuan.
  3. Berikutnya guru dapat mengarahkan siswa untuk menerapkan perbandingan trigonometri dalam permasalahan tersebut. Misalnya akan diukur tinggi pohon P. Minta salah seorang siswa, katakanlah siswa A, berdiri dalam jarak tertentu terhadap benda yang ingin diukur ketinggiannya. Misalkan jaraknya x meter. Dengan bantuan klinometer dapat diketahui besarnya sudut yang dibentuk oleh siswa A dengan pohon P, katakanlah sudut yang dibentuk adalah ?. Dengan menggunakan aturan tangent, dengan mudah akan diperoleh tinggi pohon P. yakni:
    Tinggi pohon P = x tan(?)

  4. Ajak siswa membandingkan efektifitas dan tingkat kemudahan berbagai macam cara yang diperoleh melalui kegiatan tersebut. Dari sini akan diperoleh gambaran bahwa matematika khususnya perbandingan trigonometri dapat mempermudah menyelesaikan permasalahan yang ada.
  5. Kegiatan pembelajaran dapat diakhiri dengan meminta siswa menuliskan rangkaian kegiatan yang dilakukan hingga hasil akhir yang dicapai. Dengan ini, kemungkinan besar siswa dapat lebih memahami konsep perbandingan trigonometri.


Proses pembelajaran seperti ini, jika terus dilakukan dan dikembangkan dalam berbagai topik pembelajaran matematika , dimungkinkan akan menciptakan pembelajaran matematika yang lebih asyik dan menarik, sekaligus mengikis pencitraan buruk dan menakutkan yang melekat padanya.




Written By : Euis Asriani, M.Si
Dosen D3 Perikanan UBB


Download Artikel MATEMATIKA DAN CARA MENGAJARKANNYA
Dikirim oleh Admin
Tanggal 2010-07-13
Jam 15:08:14



Baca Artikel Lainnya :


Baca Berita :


Baca Feature :


Lihat Foto :

 
 
       

 

 

 

 

 

 
:: Beberapa Grafik Menggunakan Format SWF, Untuk Tampilan Terbaik Aktifkan/install Active-x Plugin flash di Browser Anda
Tampilan Terbaik Dengan Resolusi Monitor 1024 x 768 Pixels ::

Rektorat Universitas Negeri Bangka Belitung Jl. Merdeka No. 4 Pangkalpinang Kep. Bangka Belitung Indonesia
Telp. +62 717 422145 Fax +62 717 421303 http://www.ubb.ac.id Email : info@ubb.ac.id
Copyright 2008 Universitas Bangka Belitung
Sitemap - Peta situs